ME 261: Numerical Analysis

Lecture-12: Numerical Interpolation

Md. Tanver Hossain
Department of Mechanical Engineering, BUET

http://tantusher.buet.ac.bd

Inverse Interpolation

Problem: Given a table of values

Find x such that: $f(x) = y_k$, where y_k is given

\mathcal{X}_{i}	x_0	x_1	 \mathcal{X}_n
\mathcal{Y}_i	y_0	y_1	 y_n

One approach:

Use polynomial interpolation to obtain $f_n(x)$ to interpolate the data then use Newton's method to find a solution to x

$$f_n(x) = y_k$$

Inverse Interpolation

Inverse interpolation:

Exchange the roles
 of x and y.

\mathcal{X}_{i}	\mathcal{X}_0	\mathcal{X}_1		\mathcal{X}_n
${\cal Y}_i$	y_0	\mathcal{Y}_1	•••	\mathcal{Y}_n

- 2. Perform polynomial Interpolation on the new table.
- y_i y_0 y_1 y_n x_i x_0 x_1 x_n

3. Evaluate

$$x = f_n(y_k)$$

Inverse Interpolation

Example

Problem:

X	1	2	3
У	3.2	2.0	1.6

Given the table. Find x such that f(x) = 2.5

3.2	1	8333	1.0417
2.0	2	-2.5	
1.6	3		

$$x = f_2(y) = 1 - 0.8333(y - 3.2) + 1.0417(y - 3.2)(y - 2)$$

 $x = f_2(2.5) = 1 - 0.8333(-0.7) + 1.0417(-0.7)(0.5) = 1.2187$

Why Spline Interpolation?

Apply lower-order polynomials to subsets of data points. Spline provides a superior approximation of the behavior of functions that have local, abrupt changes.

Why Splines?

Figure: Higher order polynomial interpolation is a bad idea

Spline Interpolation

- Polynomials are the most common choice of interpolants.
- There are cases where polynomials can lead to erroneous results because of round off error and overshoot.
- Alternative approach is to apply lower-order polynomials to subsets of data points. Such connecting polynomials are called spline functions.

Spline provides a superior approximation of the behavior of functions that have local, abrupt changes (d).

Spline Interpolation

The concept of spline is using a thin, flexible strip (called a spline) to draw smooth curves through a set of points....natural spline (cubic)

Linear Spline

The first order splines for a group of ordered data points can be defined as a set of linear functions:

$$f(x) = f(x_0) + m_0(x - x_0) \qquad x_0 \le x \le x_1$$

$$f(x) = f(x_1) + m_1(x - x_1) \qquad x_1 \le x \le x_2$$

$$f(x) = f(x_{n-1}) + m_{n-1}(x - x_{n-1})$$
 $x_{n-1} \le x \le x_n$

$$m_i = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Linear spline - Example

Fit the following data with **first order splines**. Evaluate the function at x = 5.

x	f(x)	$m = \frac{2.5 - 1}{7 - 4.5} = 0.6$
3.0 4.5 7.0	2.5 1.0 2.5	f(5)=f(4.5)+m(5-4.5) = 1.0+0.6× 0.5
9.0	0.5	=1.3

Linear Spline

- The main disadvantage of linear spline is that they are not smooth. The data points where 2 splines meets called (a knot), the changes abruptly.
- The first derivative of the function is discontinuous at these points.
- Using higher order polynomial splines ensure smoothness at the knots by equating derivatives at these points.

Quadric Splines

- **Objective:** to derive a second order polynomial for each interval between data points. $f_i(x) = a_i x^2 + b_i x + c_i$
- Terms: Interior knots and end points

For n+1 data points:

- i = (0, 1, 2, ...n),
- **n** intervals,
- 3n unknown constants (a's, b's and c's)

Quadric Splines

 The function values of adjacent polynomial must be equal at the interior knots 2(n-1).

$$a_{i-1}x_{i-1}^{2} + b_{i-1}x_{i-1} + c_{i-1} = f_{i}(x_{i-1}) \quad i = 2, 3, 4, ..., n$$

$$a_{i}x_{i-1}^{2} + b_{i}x_{i-1} + c_{i} = f_{i}(x_{i-1}) \quad i = 2, 3, 4, ..., n$$

• The first and last functions must pass through the end points (2).

$$a_1 x_{0^2} + b_1 x_0 + c_1 = f(x_0)$$

 $a_n x_{n^2} + b_n x_n + c_n = f(x_n)$

Quadric Splines

 The first derivatives at the interior knots must be equal (n-1).

$$f_{i}(x) = 2a_{i}x + b_{i}$$

$$2a_{i-1}x_{i-1} + b_{i-1} = 2a_{i}x_{i-1} + b_{i}$$

 Assume that the second derivate is zero at the first point (1)

$$a_1 = 0$$

(The first two points will be connected by a straight line)

Fit the following data with **quadratic splines**. Estimate the value at x = 5.

•	
x	f(x)
3.0	2.5
4.5	1.0
7.0	2.5
9.0	0.5

Solutions:

There are **3** intervals (n=3), **9** unknowns.

- 1. Equal interior points:
- > For first interior point (4.5, 1.0)
- > For second interior point (7.0, 2.5)

$$20.25a_1 + 4.5b_1 + c_1 = 1.0$$
$$20.25a_2 + 4.5b_2 + c_2 = 1.0$$
$$49a_2 + 7b_2 + c_2 = 2.5$$
$$49a_3 + 7b_3 + c_3 = 2.5$$

First and last functions pass the end points

For the start point (3.0, 2.5)

$$x_0^2 a_1 + x_0 b_1 + c_1 = f(x_0) \rightarrow 9a_1 + 3b_1 + c_1 = 2.5$$

For the end point (9, 0.5) $x_3^2 a_1 + x_3 b_3 + c_3 = f(x_3)$ \longrightarrow $81 a_3 + 9b_3 + c_3 = 0.5$

> Equal derivatives at the interior knots.

For first interior point (4.5, 1.0)

For second interior point (7.0, 2.5)

$$9a_1 + b_1 = 9a_2 + b_2$$
$$14a_2 + b_2 = 14a_3 + b_3$$
$$a_1 = 0$$

$\lceil 4.$	5 1		0	0	0	0	0	0	(b_1)		[1]	
() ()	20.25			0	0	0	c_1		1 1 2.5	
() ()	49	7	1	0	0	0	a ₂		2.5	
() ()	0	0	0	49	7	1	b_2		2.5	
3	3 1		0	0	0	0	0	0	c_2) = {	2.5	Ì
() ()	0	0	0	81	9	1	аз		0.5	
1	. ()	- 9	-1	0	0	0	0	b_3		0	
() ()	14	1	0	-14	-1	0	<i>C</i> 3		0	

Solving these 9 equations with 9 unknowns

$$a_1 = 0$$
, $b_1 = -1$, $c_1 = 5.5$
 $a_2 = 0.64$, $b_2 = -6.76$, $c_2 = 18.46$
 $a_3 = -1.6$, $b_3 = 24.6$, $c_3 = -91.3$

$$f_1(x) = -x + 5.5,$$

$$3.0 \le x \le 4.5$$

$$f_2(x) = 0.46x^2 - 6.76x + 18.46$$

$$4.5 \le x \le 7.0$$

$$f_3(x) = -1.6x^2 + 24.6x - 91.3,$$

$$7.0 \le x \le 9.0$$

Cubic Splines

Objective: to derive a third order polynomial for each interval between data points.

Terms: Interior knots and end points

$$f_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

For *n*+1 data points:

- i = (0, 1, 2, ...n),
- **n** intervals,
- 4n unknown constants (a's, b's ,c's and d's)

Cubic Splines

- The function values must be equal at the interior knots (2n-2).
- The first and last functions must pass through the end points (2).
- The first derivatives at the interior knots must be equal (n-1).
- The second derivatives at the interior knots must be equal (n-1).
- The second derivatives at the end knots are zero (2), (the 2nd derivative function becomes a straight line at the end points)

